

neg. No. :	Reg.	No.	:		
------------	------	-----	---	--	--

Name :

Third Semester B.Tech. Degree Examination, January 2015 (2008 Scheme) 08.303 : DISCRETE STRUCTURES (RF)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

- Define functionally complete set of connectives. Give example.
- 2. Symbolize the statement "All men are mortal".

- 4. State rules of inference in statement calculus.
- Give examples of two relations which are symmetric and antisymmetric.
- 6. Draw the Hasse diagram for $(P(A), \subseteq)$ where $A = \{a, b, c\}$ and P(A) its power set and \subseteq , the inclusion relation.
- 7. Determine the equivalence relation defined by $C = \{(a, b), \{c\}, \{d, e\}\}$ on $X = \{a, b, c, d, e\}$.
- 8. Define graph. Give an example.
- 9. Define Boolean algebra. Give an example.
- 10. Define ring. Give an example.

PART-B

Answer one question from each Module. All questions carry equal marks.

Module - 1

11. a) Show that $R \rightarrow S$ can be derived from the premises $P \rightarrow (Q \rightarrow S)$, $\neg R \lor P$, 10 and Q. b) Show that (x) $(P(x) \rightarrow Q(x)) \land (x) (Q(x) \rightarrow R(x)) \Rightarrow (x) (P(x) \rightarrow R(x))$. 10 OR 12. a) Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$. 10 b) Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R$, $P \rightarrow M$ and $\neg M$ using rules of inference. 10 Module - 2 13. a) Determine the quotient set of the relation congruence Modulo 3 on Z where Z is the set of positive integers. 8 b) Show that every equivalence relation on a set defines a partition on the set. 12 'OR 14. a) Show that infinite subset of a denumerable set is also denumerable. 10 b) Show that for $n \ge 2$, $n^4 - 4n^2$ is divisible by 3. 10 Module - 3 15. Show that $(Z_7, +7, X_7)$ is a field. 20 16. a) Show that if (G, *) is a finite cyclic group generated by an element a∈G and G is of order n, then $a^n = e$. 10 b) Show that the ring of even integers is a subring of the ring of integers. 10